Part Number Hot Search : 
STI7100 LDR100SB AD549K KTC4080 28000 AD549K V22ZC1 BA7042
Product Description
Full Text Search
 

To Download IRF3415 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRF3415 hexfet ? power mosfet pd - 91477d fifth generation hexfets from international rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. the to-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. the low thermal resistance and low package cost of the to-220 contribute to its wide acceptance throughout the industry. s d g parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 43 i d @ t c = 100c continuous drain current, v gs @ 10v 30 a i dm pulsed drain current ? 150 p d @t c = 25c power dissipation 200 w linear derating factor 1.3 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy ? 590 mj i ar avalanche current ? 22 a e ar repetitive avalanche energy ? 20 mj dv/dt peak diode recovery dv/dt ? 5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torque, 6-32 or m3 srew 10 lbf?in (1.1n?m) absolute maximum ratings parameter typ. max. units r q jc junction-to-case CCC 0.75 r q cs case-to-sink, flat, greased surface 0.50 CCC c/w r q ja junction-to-ambient CCC 62 thermal resistance v dss = 150v r ds(on) = 0.042 w i d = 43a t o -22 0 ab l advanced process technology l dynamic dv/dt rating l 175c operating temperature l fast switching l fully avalanche rated description 5/13/98
IRF3415 parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC 1.3 v t j = 25c, i s = 22a, v gs = 0v ? t rr reverse recovery time CCC 260 390 ns t j = 25c, i f = 22a q rr reverse recoverycharge CCC 2.2 3.3 c di/dt = 100a/s ? source-drain ratings and characteristics s d g parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 150 CCC CCC v v gs = 0v, i d = 250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC 0.17 CCC v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance CCC CCC 0.042 w v gs = 10v, i d = 22a ? v gs(th) gate threshold voltage 2.0 CCC 4.0 v v ds = v gs , i d = 250a g fs forward transconductance 19 CCC CCC s v ds = 50v, i d = 22a CCC CCC 25 a v ds = 150v, v gs = 0v CCC CCC 250 v ds = 120v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 20v gate-to-source reverse leakage CCC CCC -100 na v gs = -20v q g total gate charge CCC CCC 200 i d = 22a q gs gate-to-source charge CCC CCC 17 nc v ds = 120v q gd gate-to-drain ("miller") charge CCC CCC 98 v gs = 10v, see fig. 6 and 13 ? t d(on) turn-on delay time CCC 12 CCC v dd = 75v t r rise time CCC 55 CCC i d = 22a t d(off) turn-off delay time CCC 71 CCC r g = 2.5 w t f fall time CCC 69 CCC r d = 3.3 w, see fig. 10 ? between lead, CCC CCC 6mm (0.25in.) from package and center of die contact c iss input capacitance CCC 2400 CCC v gs = 0v c oss output capacitance CCC 640 CCC pf v ds = 25v c rss reverse transfer capacitance CCC 340 CCC ? = 1.0mhz, see fig. 5 nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance CCC CCC s d g i gss ns 4.5 7.5 i dss drain-to-source leakage current ? repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 ) ? i sd 22a, di/dt 820a/s, v dd v (br)dss , t j 175c notes: ? v dd = 25v, starting t j = 25c, l = 2.4mh r g = 25 w , i as = 22a. (see figure 12) ? pulse width 300s; duty cycle 2%. 43 150 a
IRF3415 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 10 100 1000 1 10 100 20us pulse width t = 25 c j o top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.5v 4.5v v , drain-to-source volta g e (v) i , drain-to-source current (a) ds d 4.5v 10 100 1000 1 10 100 20us pulse width t = 175 c j o top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.5v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) o v = i = gs d 10v 37a 5.0v 5.0v 10 100 1000 4 5 6 7 8 9 10 v = 50v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j
IRF3415 fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 0 1000 2000 3000 4000 5000 6000 v , drain-to-source volta g e (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss g s g d , ds rss g d oss ds g d c iss c oss c rss 0 40 80 120 160 200 0 4 8 12 16 20 q , total gate char g e (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 22a v = 30v ds v = 75v ds v = 120v ds 0.1 1 10 100 1000 0.2 0.6 1.0 1.4 1.8 v ,source-to-drain volta g e (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j o t = 175 c j o 1 10 100 1000 1 10 100 1000 operation in this area limited by r ds(on) single pulse t t = 175 c = 25 c j c o o v , drain-to-source volta g e (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms
IRF3415 fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms v ds pulse width 1 s duty factor 0.1 % r d v gs r g d.u.t. 10v + - v dd fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 175 0 10 20 30 40 50 t , case temperature ( c) i , drain current (a) c d 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)
IRF3415 q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - 10 v fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 w t p d.u.t l v ds + - v dd driver a 15v 20v 25 50 75 100 125 150 175 0 200 400 600 800 1000 1200 1400 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as o i d top bottom 9.0a 16a 22a
IRF3415 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfets * v gs = 5v for logic level devices peak diode recovery dv/dt test circuit ? ? ? r g v dd dv/dt controlled by r g driver same type as d.u.t. i sd controlled by duty factor "d" d.u.t. - device under test d.u.t circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? *
IRF3415 lead assignments 1 - gate 2 - drain 3 - sou rc e 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) m in 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 d im e n s io n in g & to l e r a n c ing p e r a n s i y 1 4.5m , 1 9 82. 3 o u t lin e c o n f o r m s to je d e c o u t lin e to -2 20 a b . 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. part number inte rn at io n al r ec tifie r lo g o example : this is an irf1010 w ith a ss e m bly lo t co de 9b 1m assembly l ot co d e date code (yyw w ) yy = year ww = week 9246 irf1010 9b 1m a part marking information to-220ab package outline to-220ab outline dimensions are shown in millimeters (inches) part number international rectifier lo g o example : this is an irf1010 w it h as se m b ly lo t c o de 9b1m assembly lo t co de date code (yyww) yy = year ww = week 9246 irf1010 9b 1m a world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 european headquarters: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 7321 victoria park ave., suite 201, markham, ontario l3r 2z8, tel: (905) 475 1897 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 315 outram road, #10-02 tan boon liat building, singapore 0316 tel: 65 221 8371 http://www.irf.com/ data and specifications subject to change without notice. 5/98


▲Up To Search▲   

 
Price & Availability of IRF3415

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X